This function extracts the results of posthoc test.

extract_posthoc_res(object, features = NULL)

Arguments

object

a postHocTest object.

features

either NULL extracts results of all features, or a character vector to specify the test resuts of which features are extracted.

Value

a IRanges::SimpleDFrameList object.

Examples

require(IRanges)
#> Loading required package: IRanges
#> Loading required package: BiocGenerics
#> 
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#> 
#>     IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#> 
#>     Filter, Find, Map, Position, Reduce, anyDuplicated, append,
#>     as.data.frame, basename, cbind, colnames, dirname, do.call,
#>     duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#>     lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#>     pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#>     tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#> Loading required package: stats4
#> 
#> Attaching package: ‘S4Vectors’
#> The following objects are masked from ‘package:base’:
#> 
#>     I, expand.grid, unname
pht <- postHocTest(
    result = DataFrameList(
        featureA = DataFrame(
            comparisons = c("group2-group1", 
                "group3-group1", 
                "group3-group2"),
            diff_mean = runif(3),
            pvalue = rep(0.01, 3),
            ci_lower = rep(0.01, 3),
            ci_upper = rep(0.011, 3)
        ),
        featureB = DataFrame(
            comparisons = c("group2-group1", 
                "group3-group1", 
                "group3-group2"),
            diff_mean = runif(3),
            pvalue = rep(0.01, 3),
            ci_lower = rep(0.01, 3),
            ci_upper = rep(0.011, 3)
        )
    ),
    abundance = data.frame(
        featureA = runif(3),
        featureB = runif(3),
        group = c("group1", "group2", "grou3")
    )
)
extract_posthoc_res(pht, "featureA")[[1]]
#> DataFrame with 3 rows and 5 columns
#>     comparisons diff_mean    pvalue  ci_lower  ci_upper
#>     <character> <numeric> <numeric> <numeric> <numeric>
#> 1 group2-group1  0.830995      0.01      0.01     0.011
#> 2 group3-group1  0.269026      0.01      0.01     0.011
#> 3 group3-group2  0.507985      0.01      0.01     0.011